## List 1

## Calculations with multi-variable functions

37. State whether each is a "scalar" or "vector":
(a) temperature scalar
(b) position vector
(c) voltage scalar
(d) electric field vector
(e) time scalar
(f) force vector
(g) height scalar
38. Re-write $\left\{\begin{array}{l}x=\cos (t) \\ y=t^{2}\end{array}\right.$ as a single equation using vectors. Any of these formats are okay: $\vec{r}(t)=\cos (t) \hat{\imath}+t^{2} \hat{\jmath}$ or $\vec{r}=\cos t \hat{\imath}+t^{2} \hat{\jmath}$ or $\vec{r}(t)=\left[\begin{array}{c}\cos t \\ t^{2}\end{array}\right]$ or $\vec{r}=\left[\begin{array}{c}\cos t \\ t^{2}\end{array}\right]$
39. If $\vec{r}=9 \hat{\jmath}-\hat{k}$ describes a point in 3D space, what is the $z$-coordinate? -1
40. More Analysis 1 review: Calculate...
(a) $\left(e^{5 t}\right)^{\prime}=5 e^{5 t}$
(b) $(\ln (8 t))^{\prime}=\frac{1}{t}$
(c) $\frac{d}{d t}\left[\sqrt{t^{6}+\sin (\pi t)}\right]=\frac{6 t^{5}+\cos (\pi t) \cdot \pi}{2 \sqrt{\sin (\pi t)}}$
(d) $\int 2 t^{7} \sqrt{1+t^{8}} \mathrm{~d} t=\frac{1}{6}\left(1+t^{8}\right)^{3 / 2}+C$
(e) $\int_{0}^{1} 2 t^{7} \sqrt{1+t^{8}} \mathrm{~d} t=\frac{2 \sqrt{2}-1}{6}$
(f) $\int_{0}^{\pi / 4} \cos (t) \cos (\sin (t)) \mathrm{d} t=\sin \left(\frac{1}{\sqrt{2}}\right)$
41. For the vector function $\vec{r}(t)=e^{5 t} \hat{\imath}+\ln (8 t) \hat{\jmath}$, calculate
(a) $|\vec{r}|$, also written $|\vec{r}(t)|=\sqrt{\sqrt{e^{10 t}+(\ln (8 t))^{2}}}$
(b) $\vec{r}^{\prime}=\vec{r}^{\prime}(t)=5 e^{5 t} \hat{\imath}+\frac{1}{t} \hat{\jmath}$
(c) $\left|\vec{r}^{\prime}\right|=\sqrt{25 e^{10 t}+\frac{1}{t^{2}}}$
(d) $|\vec{r}|^{\prime}=\frac{10 e^{10 t}+2 \ln (8 t) \frac{1}{t}}{2 \sqrt{e^{10 t}+(\ln (8 t))^{2}}}$
42. Calculate both $\left|\vec{r}^{\prime}\right|$ and $|\vec{r}|^{\prime}$ for $\vec{r}=\left[\begin{array}{c}\cos 3 t \\ \sin 3 t\end{array}\right]$.

$$
\begin{aligned}
& \left|\vec{r}^{\prime}\right|=|[-3 \sin 3 t, 3 \cos 3 t]|=\sqrt{(-3 \sin 3 t)^{2}+(3 \cos 3 t)^{2}}=\sqrt{9\left(c^{2}+s^{2}\right)}=3 . \\
& |\vec{r}|^{\prime}=\left(\sqrt{(\cos 3 t)^{2}+(\sin 3 t)^{2}}\right)^{\prime}=(\sqrt{1})^{\prime}=0
\end{aligned}
$$

43. If $f(x, y, z)=7 x y^{3} \sin (x+z)$ and $x=t^{2}$ and $y=e^{t}$ and $z=t^{3}$, write a formula for $f(\vec{r}(t))=f(x(t), y(t), z(t))$ using $t$ as the only variable. $f=7 t^{2} e^{3 t} \sin \left(t^{2}+t^{3}\right)$

The path integral of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ along the curve $C$ traced by $\vec{r}:[a, b] \rightarrow \mathbb{R}^{n}$ is

$$
\int_{C} f \mathrm{~d} s=\int_{a}^{b} f(\vec{r}(t))\left|\vec{r}^{\prime}(t)\right| \mathrm{d} t
$$

44. Calculate $\int_{a}^{b} f(\vec{r}(t))\left|\vec{r}^{\prime}(t)\right| \mathrm{d} t$ for the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)=x^{3}+y^{3}
$$

and the curve $\vec{r}:[0,4] \rightarrow \mathbb{R}^{2}$ given by

$$
\begin{aligned}
\vec{r}(t) & =x(t) \hat{\imath}+y(t) \hat{\jmath}=2 t \hat{\imath}-t \hat{\jmath} . \\
\vec{r}^{\prime} & =2 \hat{\imath}-\hat{\jmath} \\
\left|\vec{r}^{\prime}\right| & =\sqrt{(2)^{2}+(-1)^{2}}=\sqrt{5} \\
f(\vec{r}(t)) & =(2 t)^{3}+(-t)^{3}=7 t^{3} \\
f(\vec{r}(t))\left|\vec{r}^{\prime}\right| & =7 \sqrt{5} t^{3} \\
\int_{C} f \mathrm{~d} s & =\int_{0}^{4} 7 \sqrt{5} t^{3} \mathrm{~d} t=\left.\frac{7 \sqrt{5} t^{4}}{4}\right|_{t=0} ^{t=4}=448 \sqrt{5}
\end{aligned}
$$

45. Integrate

$$
f(x, y)=\frac{x^{4}}{y}
$$

over the curve parameterized by

$$
\vec{r}(t)=t^{2} \hat{\imath}+t^{-2} \hat{\jmath}, \quad 0 \leq t \leq 1 .
$$

$\frac{2 \sqrt{2}-1}{6}$ (See Task 40(e))
46. Integrate

$$
f(x, y, z)=\frac{\ln (x) e^{z}}{\sqrt{1+y^{2}+y^{2} e^{2 y}}}
$$

over the curve parameterized by

$$
\vec{r}(t)=e^{t} \hat{\imath}+t \hat{\jmath}+\ln (t) \hat{k}, \quad 1 \leq t \leq \sqrt{23} .
$$

$$
\begin{aligned}
\vec{r}^{\prime} & =e^{t} \hat{\imath}+\hat{\jmath}+\frac{1}{t} \hat{k} \\
\left|\vec{r}^{\prime}\right| & =\sqrt{e^{2 t}+1+t^{-2}} \\
f(\vec{r}(t)) & =\frac{\ln \left(e^{t}\right) e^{\ln (t)}}{\sqrt{1+t^{2}+t^{2} e^{2 t}}}=\frac{t \cdot t}{\sqrt{t^{2}\left(t^{-2}+1+e^{2 t}\right)}} \\
f(\vec{r}(t))\left|\vec{r}^{\prime}\right| & =\frac{t \cdot t}{\sqrt{t^{2}\left(t^{-2}+1+e^{2 t}\right)}} \cdot \sqrt{e^{2 t}+1+t^{-2}}=t \\
\int_{C} f \mathrm{~d} s & =\int_{1}^{\sqrt{23}} t \mathrm{~d} t=\left.\frac{t^{2}}{2}\right|_{t=1} ^{t=\sqrt{23}}=11
\end{aligned}
$$

47. Integrate $x \cos y$ over the curve $\vec{r}=[5, \sin t]$ with $0 \leq t \leq \pi / 4$. $5 \sin \left(\frac{1}{\sqrt{2}}\right)$ (See Task 40(f), multiplied by 5)
The partial derivative of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ with respect to $\boldsymbol{x}$ can be written as any of

$$
f_{x}^{\prime}(x, y) \quad f_{x}^{\prime} \quad D_{x} f(x, y) \quad D_{x} f \quad \partial_{x} f \quad \frac{\partial f}{\partial x} .
$$

Officially, it is defined as $\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}$, but in practice it is calculated by thinking of every letter other than $x$ as a constant.

Similarly, the partial derivative of $f$ with respect to any one variable involves thinking of every other variable as constant.
48. Give the partial derivative of

$$
f(x, y)=x y^{3}+x^{2} \sin (x y)-2^{x}
$$

with respect to $x$, which is a new function with two inputs. We can write $f_{x}^{\prime}(x, y)$ or $f_{x}^{\prime}$ or $\frac{\partial f}{\partial x}$ or $\frac{\partial}{\partial x} f$ or $\frac{\partial}{\partial x}\left[x y^{3}+x^{2} \sin (x y)-2^{x}\right]$ for this function.
It may help to think about $\frac{\mathrm{d}}{\mathrm{d} x}\left[a x+x^{2} \sin (b x)-2^{x}\right]$, where $a, b, c$ are constants.

$$
y^{3}+x^{2} y \cos (x y)+2 x \sin (x y)-2^{x} \ln (2)
$$

49. Give the partial derivative of

$$
f(x, y)=x y^{3}+x^{2} \sin (x y)-2^{x}
$$

with respect to $y$, which is a new function with two inputs. We can write $f_{y}^{\prime}(x, y)$ or $f_{y}^{\prime}$ or $\frac{\partial f}{\partial y}$ or $\frac{\partial}{\partial y} f$ or $\frac{\partial}{\partial y}\left[x y^{3}+x^{2} \sin (x y)-2^{x}\right]$ for this function.
It may help to think about $\frac{\mathrm{d}}{\mathrm{d} t}\left[a t^{3}+b \sin (c t)-d\right]$, where $a, b, c, d$ are constants.

$$
3 x y^{2}+x^{3} \cos (x y)
$$

50. Find the functions $\frac{\partial}{\partial x}\left[y^{x}\right]$ and $\frac{\partial}{\partial y}\left[y^{x}\right]$.

$$
f_{x}^{\prime}=y^{x} \ln (y), f_{y}^{\prime}=x y^{x-1}
$$

51. Calculate the partial derivative of $f(x, y)=y^{x}$ with respect to $x$ at the point $(5,2)$, which is a number. We can write $f_{x}^{\prime}(5,2)$ or $\frac{\partial f}{\partial x}(5,2)$ or $\left.\frac{\partial f}{\partial x}\right|_{\substack{x=5 \\ y=2}}$ for this. $\ln (9) \approx 2.19722$
52. Calculate the partial derivative of $f(x, y)=y^{x}$ with respect to $y$ at the po$\operatorname{int}(5,2)$, which is a number. We can write $f_{y}^{\prime}(5,2)$ or $\frac{\partial f}{\partial y}(5,2)$ or $\left.\frac{\partial f}{\partial y}\right|_{\substack{x=5 \\ y=2}}$ for this. $5 \cdot 2^{4}=80$
53. Calculate $f_{x}^{\prime}$ and $f_{y}^{\prime}$ and $f_{z}^{\prime}$ for $f(x, y, z)=\frac{y}{x^{3}+z}$.

$$
f_{x}^{\prime}=\frac{-3 x^{2} y}{\left(x^{3}+z\right)^{2}}, \quad f_{y}^{\prime}=\frac{1}{x^{3}+z}, \quad f_{z}^{\prime}=\frac{-y}{\left(x^{3}+z\right)^{2}}
$$

54. Find each of the following partial derivatives:
(a) $\frac{\partial}{\partial x}\left[x^{2} y\right]=2 x y$
(g) $\frac{\partial}{\partial z}[x y z]=x y$
(b) $\frac{\partial}{\partial y}\left[x^{2} y\right]=x^{2}$
(h) $\frac{\partial}{\partial z}\left[e^{x y z}\right]=e^{x y z} x y$
(c) $\frac{\partial}{\partial x}[x y z]=y z$
(d) $\frac{\partial}{\partial x}\left[x^{y}\right]=y x^{y-1}$
(i) $\frac{\partial}{\partial a}\left[\left(a^{2}+b^{2}\right)\right]=2 a$
(e) $\frac{\partial}{\partial y}\left[x^{y}\right]=x^{y} \ln (x)$
(j) $\frac{\partial}{\partial y}\left[x^{2} \sin (x y)\right]=x^{3} \cos (x y)$
(f) $\frac{\partial}{\partial r}\left[\pi r^{2} h\right]=2 \pi r h$
(k) $\frac{\partial}{\partial y}[\ln (5 x)]=0$
( ) $\frac{\partial}{\partial y}\left[\frac{\cos (x+y)}{2 x+5 y}\right]=\frac{-(2 x+5 y) \sin (x+y)-5 \cos (x+y)}{(2 x+5 y)^{2}}$
55. Calculate $u_{x}^{\prime}, u_{y}^{\prime}, v_{x}^{\prime}$, and $v_{y}^{\prime}$ for the functions $u(x, y)=\frac{x^{2}}{y}$ and $v(x, y)=x-y^{2}$. $u_{x}^{\prime}=2 x y^{-1}, \quad u_{y}^{\prime}=-x^{2} y^{-2}, \quad v_{x}^{\prime}=1, \quad v_{y}^{\prime}=-2 y$

For a function $f(x, y)$, the second derivative with respect to $\boldsymbol{x}$ twice is

$$
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)
$$

and can be written as $\frac{\partial^{2} f}{\partial x^{2}}$ or as $f_{x x}^{\prime \prime}$.
Similarly, the second d. with respect to $\boldsymbol{y}$ twice is $f_{y y}^{\prime \prime}=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)$. The mixed partial derivatives are

$$
f_{x y}^{\prime \prime}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) \quad \text { and } \quad f_{y x}^{\prime \prime}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)
$$

56. Calculate $f_{x x}^{\prime \prime}$ for $f=e^{x y}$ by calculating $f_{x}^{\prime}$ and then $\frac{\partial}{\partial x}\left(f_{x}^{\prime}\right)$. $f_{x}^{\prime}=y e^{x y}$, and $f_{x x}^{\prime \prime}=y^{2} e^{x y}$
57. Calculate $f_{y y}^{\prime \prime}$ for $f=y^{x}$ by calculating $f_{y}^{\prime}$ and then $\frac{\partial}{\partial y}\left(f_{y}^{\prime}\right)$.
$f_{y}^{\prime}=x y^{x-1}$, and $f_{y y}^{\prime \prime}=x^{2} y^{x-2}$
58. For $f=\frac{x}{y}$,
(a) Calculate $f_{x y}^{\prime \prime}$ by calculating $f_{x}^{\prime}$ and then $\frac{\partial}{\partial y}\left(f_{x}^{\prime}\right) \cdot f_{x}^{\prime}=\frac{1}{y}$ and $f_{x y}^{\prime \prime}=-\frac{1}{y^{2}}$
(b) Calculate $f_{y x}^{\prime \prime}$ by calculating $f_{y}^{\prime}$ and then $\frac{\partial}{\partial x}\left(f_{y}^{\prime}\right) . f_{y}^{\prime}=-\frac{x}{y^{2}}$ and $f_{y x}^{\prime \prime}=-\frac{1}{y^{2}}$
59. For $g=e^{\cos (x)}+\ln \left(y^{3}\right)$,
(a) Calculate $g_{x y}^{\prime \prime}$ by calculating $g_{x}^{\prime}$ and then $\frac{\partial}{\partial y}\left(g_{x}^{\prime}\right)$.

$$
f_{x}^{\prime}=\sin (x)\left(-e^{\cos (x)}\right) \text { and } f_{x y}^{\prime \prime}=0
$$

(b) Calculate $g_{y x}^{\prime \prime}$ by calculating $g_{y}^{\prime}$ and then $\frac{\partial}{\partial x}\left(g_{y}^{\prime}\right)$.

$$
f_{y}^{\prime}=\frac{3 y^{2}}{y^{3}}=\frac{3}{y} \text { and } f_{y x}^{\prime \prime}=0
$$

W6. Give an example of a function $f(x, y)$ for which $f_{x}^{\prime}=y^{4}$ and $f_{y}^{\prime}=x^{4}$, or explain why no such $f(x, y)$ exists.
Such an $f$ does not exist. If it did, then $f_{x y}^{\prime \prime}=\frac{\partial}{\partial y}\left(f_{x}^{\prime}\right)$ would be $\frac{\partial}{\partial y}\left(y^{4}\right)=4 y^{3}$, and $f_{y x}^{\prime \prime}=\frac{\partial}{\partial x}\left(f_{y}^{\prime}\right)$ would be $\frac{\partial}{\partial x}\left(x^{4}\right)=4 x^{3}$. But $f_{x y}^{\prime \prime}$ and $f_{y x}^{\prime \prime}$ must be equal.
61. Give all the second partial derivatives of $f(x, y)=x \ln (x y)$.

$$
f_{x x}^{\prime \prime}=\frac{1}{x}, \quad f_{x y}^{\prime \prime}=f_{y x}^{\prime \prime}=\frac{1}{y}, \quad f_{y y}^{\prime \prime}=\frac{-x}{y^{2}}
$$

