Analysis 2, Summer 2024

List 1

Calculations with multi-variable functions

- 37. State whether each is a "scalar" or "vector":
 - (a) temperature scalar
 - (b) position vector
 - (c) voltage scalar
 - (d) electric field vector
 - (e) time scalar
 - (f) force vector
 - (g) height scalar
- 38. Re-write $\begin{cases} x = \cos(t) \\ y = t^2 \end{cases}$ as a single equation using vectors. Any of these formats

are okay:
$$\vec{r}(t) = \cos(t)\hat{i} + t^2\hat{j}$$
 or $\vec{r} = \cos t \,\hat{i} + t^2\hat{j}$ or $\vec{r}(t) = \begin{bmatrix} \cos t \\ t^2 \end{bmatrix}$ or $\vec{r} = \begin{bmatrix} \cos t \\ t^2 \end{bmatrix}$

- 39. If $\vec{r} = 9\hat{\jmath} \hat{k}$ describes a point in 3D space, what is the z-coordinate?
- 40. More Analysis 1 review: Calculate...
 - (a) $(e^{5t})' = 5e^{5t}$
 - (b) $(\ln(8t))' = \frac{1}{t}$

(c)
$$\frac{d}{dt} \left[\sqrt{t^6 + \sin(\pi t)} \right] = \boxed{\frac{6t^5 + \cos(\pi t) \cdot \pi}{2\sqrt{\sin(\pi t)}}}$$

(d)
$$\int 2t^7 \sqrt{1+t^8} \, dt = \boxed{\frac{1}{6}(1+t^8)^{3/2} + C}$$

(e)
$$\int_0^1 2t^7 \sqrt{1+t^8} \, dt = \boxed{\frac{2\sqrt{2}-1}{6}}$$

(f)
$$\int_0^{\pi/4} \cos(t) \cos(\sin(t)) dt = \sin(\frac{1}{\sqrt{2}})$$

41. For the vector function $\vec{r}(t) = e^{5t}\hat{i} + \ln(8t)\hat{j}$, calculate

(a)
$$|\vec{r}|$$
, also written $|\vec{r}(t)| = \sqrt{e^{10t} + (\ln(8t))^2}$ (b) $\vec{r}' = \vec{r}'(t) = 5e^{5t}\hat{\imath} + \frac{1}{t}\hat{\jmath}$

(c)
$$|\vec{r}'| = \sqrt{25e^{10t} + \frac{1}{t^2}}$$
 (d) $|\vec{r}|' = \sqrt{\frac{10e^{10t} + 2\ln(8t)\frac{1}{t}}{2\sqrt{e^{10t} + (\ln(8t))^2}}}$

42. Calculate both
$$|\vec{r}'|$$
 and $|\vec{r}|'$ for $\vec{r} = \begin{bmatrix} \cos 3t \\ \sin 3t \end{bmatrix}$.

$$|\vec{r}'| = |[-3\sin 3t, 3\cos 3t]| = \sqrt{(-3\sin 3t)^2 + (3\cos 3t)^2} = \sqrt{9(c^2 + s^2)} = \boxed{3}.$$

$$|\vec{r}|' = (\sqrt{(\cos 3t)^2 + (\sin 3t)^2})' = (\sqrt{1})' = \boxed{0}$$

43. If $f(x, y, z) = 7xy^3 \sin(x + z)$ and $x = t^2$ and $y = e^t$ and $z = t^3$, write a formula for $f(\vec{r}(t)) = f(x(t), y(t), z(t))$ using t as the only variable. f(t) = f(t) = f(t)

The **path integral** of $f: \mathbb{R}^n \to \mathbb{R}$ along the curve C traced by $\vec{r}: [a, b] \to \mathbb{R}^n$ is

$$\int_C f ds = \int_a^b f(\vec{r}(t)) |\vec{r}'(t)| dt.$$

44. Calculate $\int_a^b f(\vec{r}(t)) |\vec{r}'(t)| dt$ for the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = x^3 + y^3$$

and the curve $\vec{r}:[0,4]\to\mathbb{R}^2$ given by

$$\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} = 2t\hat{i} - t\hat{j}$$

$$\vec{r}' = 2\hat{\imath} - \hat{\jmath}$$

$$|\vec{r}'| = \sqrt{(2)^2 + (-1)^2} = \sqrt{5}$$

$$f(\vec{r}(t)) = (2t)^3 + (-t)^3 = 7t^3$$

$$f(\vec{r}(t))|\vec{r}'| = 7\sqrt{5}t^3$$

$$\int_C f \, \mathrm{d}s = \int_0^4 7\sqrt{5}t^3 \, \mathrm{d}t = \frac{7\sqrt{5}t^4}{4} \Big|_{t=0}^{t=4} = \boxed{448\sqrt{5}}$$

45. Integrate

$$f(x,y) = \frac{x^4}{y}$$

over the curve parameterized by

$$\vec{r}(t) = t^2 \hat{i} + t^{-2} \hat{j}, \quad 0 \le t \le 1.$$

$$\boxed{\frac{2\sqrt{2}-1}{6}} \text{ (See Task 40(e))}$$

46. Integrate

$$f(x, y, z) = \frac{\ln(x)e^z}{\sqrt{1 + y^2 + y^2e^{2y}}}$$

over the curve parameterized by

$$\vec{r}(t) = e^t \hat{\imath} + t \hat{\jmath} + \ln(t) \hat{k}, \qquad 1 \le t \le \sqrt{23}.$$

$$\vec{r}' = e^t \hat{\imath} + \hat{\jmath} + \frac{1}{t} \hat{k}$$

$$|\vec{r}'| = \sqrt{e^{2t} + 1 + t^{-2}}$$

$$f(\vec{r}(t)) = \frac{\ln(e^t)e^{\ln(t)}}{\sqrt{1 + t^2 + t^2e^{2t}}} = \frac{t \cdot t}{\sqrt{t^2(t^{-2} + 1 + e^{2t})}}$$

$$f(\vec{r}(t))|\vec{r}'| = \frac{t \cdot t}{\sqrt{t^2(t^{-2} + 1 + e^{2t})}} \cdot \sqrt{e^{2t} + 1 + t^{-2}} = t$$

$$\int_C f \, \mathrm{d}s = \int_1^{\sqrt{23}} t \, \mathrm{d}t = \frac{t^2}{2} \Big|_{t=1}^{t=\sqrt{23}} = \boxed{11}$$

47. Integrate $x \cos y$ over the curve $\vec{r} = [5, \sin t]$ with $0 \le t \le \pi/4$. $5 \sin(\frac{1}{\sqrt{2}})$ (See Task 40(f), multiplied by 5)

The partial derivative of f(x,y) with respect to x can be written as any of

$$f'_x(x,y)$$
 f'_x $D_x f(x,y)$ $D_x f$ $\partial_x f$ $\frac{\partial f}{\partial x}$

Officially, it is defined as $\lim_{h\to 0} \frac{f(x+h,y)-f(x,y)}{h}$, but in practice it is calculated by thinking of every letter other than x as a constant.

Similarly, the partial derivative of f with respect to any one variable involves thinking of every other variable as constant.

48. Give the partial derivative of

$$f(x,y) = xy^3 + x^2\sin(xy) - 2^x$$

with respect to x, which is a new function with two inputs. We can write $f'_x(x,y)$ or f'_x or $\frac{\partial f}{\partial x}$ or $\frac{\partial}{\partial x}f$ or $\frac{\partial}{\partial x}[xy^3+x^2\sin(xy)-2^x]$ for this function.

It may help to think about $\frac{d}{dx} \left[ax + x^2 \sin(bx) - 2^x \right]$, where a, b, c are constants.

$$y^{3} + x^{2}y\cos(xy) + 2x\sin(xy) - 2^{x}\ln(2)$$

49. Give the partial derivative of

$$f(x,y) = xy^3 + x^2\sin(xy) - 2^x$$

with respect to y, which is a new function with two inputs. We can write $f_y'(x,y)$ or f_y' or $\frac{\partial f}{\partial y}$ or $\frac{\partial}{\partial y}f$ or $\frac{\partial}{\partial y}[xy^3+x^2\sin(xy)-2^x]$ for this function.

It may help to think about $\frac{d}{dt}[at^3 + b\sin(ct) - d]$, where a, b, c, d are constants.

$$3xy^2 + x^3\cos(xy)$$

50. Find the functions $\frac{\partial}{\partial x}[y^x]$ and $\frac{\partial}{\partial u}[y^x]$.

$$f'_x = y^x \ln(y), f'_y = xy^{x-1}$$

- 51. Calculate the partial derivative of $f(x,y) = y^x$ with respect to x at the point (5,2), which is a number. We can write $f'_x(5,2)$ or $\frac{\partial f}{\partial x}(5,2)$ or $\frac{\partial f}{\partial x}\Big|_{x=\frac{5}{2}}$ for this. $\ln(9) \approx 2.19722$
- 52. Calculate the partial derivative of $f(x,y) = y^x$ with respect to y at the point (5,2), which is a number. We can write $f'_y(5,2)$ or $\frac{\partial f}{\partial y}(5,2)$ or $\frac{\partial f}{\partial y}\Big|_{\substack{x=5\\y=2}}$ for this. $5 \cdot 2^4 = 80$
- 53. Calculate f'_x and f'_y and f'_z for $f(x, y, z) = \frac{y}{x^3 + z}$. $f'_x = \frac{-3x^2y}{(x^3 + z)^2}, \quad f'_y = \frac{1}{x^3 + z}, \quad f'_z = \frac{-y}{(x^3 + z)^2}$
- 54. Find each of the following partial derivatives:

(a)
$$\frac{\partial}{\partial x} \left[x^2 y \right] = \boxed{2xy}$$

(g)
$$\frac{\partial}{\partial z} [xyz] = xy$$

(b)
$$\frac{\partial}{\partial y} \left[x^2 y \right] = \boxed{x^2}$$

(h)
$$\frac{\partial}{\partial z} \left[e^{xyz} \right] = \boxed{e^{xyz} xy}$$

(c)
$$\frac{\partial}{\partial x} [xyz] = yz$$

(i)
$$\frac{\partial}{\partial a} \left[(a^2 + b^2) \right] = 2a$$

(d)
$$\frac{\partial}{\partial x} [x^y] = \boxed{yx^{y-1}}$$

(j)
$$\frac{\partial}{\partial y} \left[x^2 \sin(xy) \right] = x^3 \cos(xy)$$

(e)
$$\frac{\partial}{\partial y} [x^y] = x^y \ln(x)$$

(k)
$$\frac{\partial}{\partial y} [\ln(5x)] = \boxed{0}$$

(f)
$$\frac{\partial}{\partial r} \left[\pi r^2 h \right] = 2\pi r h$$

$$(\ell) \frac{\partial}{\partial y} \left[\frac{\cos(x+y)}{2x+5y} \right] = \boxed{\frac{-(2x+5y)\sin(x+y) - 5\cos(x+y)}{(2x+5y)^2}}$$

55. Calculate u'_x , u'_y , v'_x , and v'_y for the functions $u(x,y) = \frac{x^2}{y}$ and $v(x,y) = x - y^2$.

$$u'_x = 2xy^{-1}, \quad u'_y = -x^2y^{-2}, \quad v'_x = 1, \quad v'_y = -2y$$

For a function f(x,y), the second derivative with respect to x twice is

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$

and can be written as $\frac{\partial^2 f}{\partial x^2}$ or as f''_{xx} .

Similarly, the second d. with respect to y twice is $f''_{yy} = \frac{\partial^2 f}{\partial u^2} = \frac{\partial}{\partial u} \left(\frac{\partial f}{\partial u} \right)$

The **mixed partial derivatives** are
$$f''_{xy} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \quad \text{and} \quad f''_{yx} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right).$$

56. Calculate
$$f''_{xx}$$
 for $f = e^{xy}$ by calculating f'_x and then $\frac{\partial}{\partial x}(f'_x)$. $f'_x = ye^{xy}$, and $f''_{xx} = y^2e^{xy}$

57. Calculate
$$f''_{yy}$$
 for $f = y^x$ by calculating f'_y and then $\frac{\partial}{\partial y}(f'_y)$. $f'_y = xy^{x-1}$, and $f''_{yy} = x^2y^{x-2}$

58. For
$$f = \frac{x}{y}$$
,

(a) Calculate
$$f''_{xy}$$
 by calculating f'_x and then $\frac{\partial}{\partial y}(f'_x)$. $f'_x = \frac{1}{y}$ and $f''_{xy} = -\frac{1}{y^2}$

(b) Calculate
$$f''_{yx}$$
 by calculating f'_{y} and then $\frac{\partial}{\partial x}(f'_{y})$. $f'_{y} = -\frac{x}{y^{2}}$ and $f''_{yx} = -\frac{1}{y^{2}}$

59. For
$$g = e^{\cos(x)} + \ln(y^3)$$
,

(a) Calculate
$$g''_{xy}$$
 by calculating g'_x and then $\frac{\partial}{\partial y}(g'_x)$. $f'_x = \sin(x) \left(-e^{\cos(x)}\right)$ and $\boxed{f''_{xy} = 0}$

(b) Calculate
$$g''_{yx}$$
 by calculating g'_{y} and then $\frac{\partial}{\partial x}(g'_{y})$. $f'_{y} = \frac{3y^{2}}{y^{3}} = \frac{3}{y}$ and $\boxed{f''_{yx} = 0}$

$$\gtrsim 60$$
. Give an example of a function $f(x,y)$ for which $f'_x = y^4$ and $f'_y = x^4$, or explain why no such $f(x,y)$ exists.

Such an
$$f$$
 does not exist. If it did, then $f''_{xy} = \frac{\partial}{\partial y}(f'_x)$ would be $\frac{\partial}{\partial y}(y^4) = 4y^3$, and $f''_{yx} = \frac{\partial}{\partial x}(f'_y)$ would be $\frac{\partial}{\partial x}(x^4) = 4x^3$. But f''_{xy} and f''_{yx} must be equal.

61. Give all the second partial derivatives of
$$f(x,y) = x \ln(xy)$$
.

$$f''_{xx} = \frac{1}{x}, \quad f''_{xy} = f''_{yx} = \frac{1}{y}, \quad f''_{yy} = \frac{-x}{y^2}$$